J.R.A.H.S. TRIAL HSC EXAMINATION 3/4 UNIT MATHEMATICS 1995

QUESTION 1 (Start a new page)

Express 0.373737...... as a proper fraction in simplest form. (a)

Find the size of the acute angle between the lines 2x + y = 5 and 3x - y = 1. (b)

Find all solutions to : $\frac{1}{x-2} \le 4$. (c)

Differentiate with respect to x: $y = \tan^{-1} 2x$. (d)

Solve $2\cos^2 x + 3\sin x - 3 = 0$, for $0 \le x \le 2\pi$. (e)

QUESTION 2 (Start a new page)

Prove the identity: $\frac{\sin 2\theta}{1 + \cos 2\theta} = \tan \theta$. (a)

Given that $\frac{dy}{dx} = \frac{1}{1+x^2}$, and x=1 when y=0, find y when $x=\sqrt{3}$. (b)

Evaluate: $\int \frac{dx}{\sqrt{3-x^2}}$ (c)

Prove by mathematical induction that $3^{4n} - 1$ is divisible by 80 for all (d)

QUESTION 3 (Start a new page)

Let the equation of motion of an object moving x metres along a straight (a) line after t seconds be: $x(t) = 4\sin 3t - 5\cos 3t$ ($t \ge 0$). Show that its motion is Simple Harmonic, and find its period of motion.

Evaluate: $\int_{\cos 22x dx}^{\frac{\pi}{8}}$ (b)

In the diagram shown, the two circles are of radius 1 metre and pass through (c)centres O and P. Find the area of their intersection (to two decimal places).

QUESTION 4 (Start a new page)

- (a) If 5% of monkeys are colourblind, what is the probability that a random sample of 20 monkeys should contain at least two colourblind monkeys? (Answer to three decimal places.)
- (b) A person invests \$1000 at the beginning of each year in a superannuation fund. If interest is paid at 9% per annum, find:
 - (i) the value of the investment at the end of 30 years.
 - (ii) how many years would clapse for the investment to be worth \$50,000.
- (c) Neatly sketch $y = 3\cos^{-1}\pi x$, and state its domain and range.

QUESTION 5 (Start a new page).

- (a) The acceleration of a particle is given by $\frac{d^2x}{dt^2} = 16(1+x)$, where x cm. is the displacement from the origin. When t = 0, x = 0 and y = 4cm./ sec.
 - (i) Derive an expression for its velocity in terms of its displacement.
 - (ii) Deduce that its displacement function is $x(t) = e^{4t} 1$.
- (b) Evaluate $\cot 2\theta$ if $\cot^2\theta \cot \theta = 1$.
- (c) ABCD and AEFG are two squares of different areas, and GDLBE. M is the mid point of DE.
 - (i) Give a reason why DE is the diameter of the circle with points A,D and E on its circumference.
 - (ii) Prove that BDEG is a cyclic quadrilateral.
 - (iii) Prove that AM I BG.

Copy the diagram below onto your answer sheet.

QUESTION 6 (Start a new page)

(a) An object is projected horizontally from the top edge of a vertical cliff 40 metres above sea level with a velocity of 40 m/s. (Take $g = 10 \text{ m/s}^2$)

(i) Using the top edge of the cliff as origin, prove that the parametric equations of the path of the object are:

 $x = 40t y = -5t^2$

- (ii) Calculate when and where the object hits the water.
- (iii) Find the velocity (magnitude and direction) of the object the instant it hits the water.
- (b) The inside of a vessel used for water has the shape of a solid of revolution obtained by the rotation of the parabola $9y = 8x^2$ about the y axis. The depth of the vessel is 8 cm.
 - (i) Prove that a volume of water h cm. from its bottom is $\frac{9}{16} \pi h^2$.
 - (ii) If water is poured into the vessel at a rate of 20 cm³/sec., find the rate at which the level of water is rising when the vessel is half full.

QUESTION 7 (Start a new page)

- (a) Two parametric points $P(2p,p^2)$ and $Q(2q,q^2)$ lie on the parabola $x^2=4y$, and the line through PQ is parallel to the line y=mx.
 - (i) Show that p + q = 2m.
 - (ii) Derive the equation of the normal to the parabola at the point P.
 - (iii) Find the co-ordinates of N, the point of intersection of the normals from P and Q.
 - (iv) Determine the locus of N as the line PQ moves parallel to the line y = mx. State any restrictions on the locus of N.
- (b) An and Bn are two series given by:

$$\begin{aligned} A_n &= 1^2 + 5^2 + 9^2 + 13^2 + \dots + (4n - 3)^2 \\ B_n &= 3^2 + 7^2 + 11^2 + 15^2 + \dots + (4n - 3)^2 \end{aligned}$$
 for $n = 1, 2, 3, \dots$

- (i) Find the nth term of Bn.
- (ii) If $S_{2n} = A_n B_n$, prove that $S_{2n} = -8n^2$.
- (iii) Hence, or otherwise, evaluate: $101^2 103^2 + 105^2 107^2 + \dots + 1993^2 1995^2$.

END OF PAPER

(c)
$$\kappa < 2$$
, $\kappa = 9/4$
(d) $\frac{2}{1+4\pi^2}$
(e) $\frac{7}{6}$, $\frac{7}{6}$, $\frac{7}{6}$
(f) $\frac{2}{1+4\pi^2}$
(g) $\frac{1}{1+4\pi^2}$
(h) $\frac{2}{1+6\pi^2}$
(li) $\frac{2}{1+6\pi^2}$
(

- 1 0 300 c 1 1043 - 5 640

6 (4 (1) -